
Forced harmonic vibration of a Duffing oscillator

In 1918, Duffing introduced a nonlinear oscillator with a cubic stiffness term to
describe the hardening spring effect observed in many mechanical problems (see
[2] for a review). Since then this equation has become, together with Van der
Pol’s equation, one of the commonest examples in nonlinear oscillation texts
and research articles.

As formalized by Duffing, the stiffness is generally a function of position.
This means that the force applied to the spring Fs, and the resulting displace-
ment y have a nonlinear relationship. If the system is symmetric, i.e., the
stiffness characteristic is the same when the spring is in compression or in ten-
sion, then the restoring force can be approximated as a series in y in which the
exponents of y are odd integers. If this series is truncated after the first two
terms then the force–deflection relationship is given in non-dimensional form by

F̃s = ỹ + γỹ3, (1)

, and illustrated in fig. 1. A positive (negative) cubic stiffness parameter γ
corresponds to a hardening (softening) spring.

Figure 1: Characteristics of a nonlinear hardening and softening spring de-
scribed by (1). (a) A nonlinear spring in which the stiffness is a function of the
displacement; (b) Force deflection characteristics for a linear spring (solid line),
hardening spring with γ = 0.3 (dashed line) and softening spring with γ = −0.3
(dashed-dotted line). Figure reproduced from [2]

Therefore, the nondimensional Duffing equation (dropping the tildes) with
damping and harmonic external forcing studied in this chapter has the form

ÿ + 2ζẏ = F cos(Ωt)− Fs ⇔
ÿ + 2ζẏ + y + γy3 = F cos(Ωt)

(2)
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where t, ζ, F and Ω are the time, damping ratio, excitation amplitude
and excitation frequency, respectively. Note that with γ = 0, (2) reduces to
the forced linear oscillator. The goal of this exercise is to understand the influ-
ence of nonlinearity and compare the behaviour of the forced nonlinear system
with that of the forced linear system.

To facilitate the nonlinear analysis, a small parameter ϵ ≪ 1, is introduced
as an asymptotic ordering parameter and the damping and nonlinear terms are
written, respectively, as ζ = ϵζ and γ = ϵγ , where ζ and γ are O(1) quantities.
A weak or soft forcing F = ϵF , where F is O(1) is also assumed. With these
assumptions, (2) can be rewritten as

ÿ + y + ϵ(2ζẏ + γy3) = ϵF cos(Ωt) (3)

Next, the system response during the resonance excitation, Ω ≈ 1, is considered.
The proximity of the excitation frequency to the system natural frequency is
expressed as

Ω = 1 + ϵσ (4)

where σ is called the detuning parameter, which is a measure of how close
the excitation frequency is to the natural frequency. Eventually, (3) is rewritten

ÿ + y + ϵ(2ζẏ + γy3) = ϵF cos((1 + ϵσ)t) (5)

Analytical approximations of the solution of (5) can be constructed by using
the method of multiple scales. Let

y(t; ϵ) = yo(T0, T1) + ϵy1(T0, T1) +O(ϵ2) (6)

where the fast timescale T0 and the slow timecale T1 are given by

T0 = t, T1 = ϵt. (7)

With the introduction of the timescales, the time derivative with respect to time
t is transformed as

d

dt
=

∂

∂T0
+ ϵ

∂

∂T1
(8)

Q1) Show that the O(1) solution reads

y0(T0, T1) = A(T1)e
iT0 +A∗(T1)e

−iT0 (9)

where A(T1) is a complex valued amplitude function, undetermined for now,
and ∗ indicates a complex conjugate of that quantity.

2



Q2) Show that the O(ϵ) equation is

∂2y1
∂T 2

0

+ y1 = −2
∂2y0

∂T0∂T1
− 2ζ

∂y0
∂T0

− γy30 + F cos(T0 + σT1) (10)

Q3) Deduce that the amplitude A(T1) must satisfy

−i(2A′ + 2ζA)− 3γA2A∗ +
F

2
eiσT1 = 0 (11)

Q4) Introducing now the polar form of the complex amplitude

A(T1) =
1

2
a(T1)e

iβ(T1) (12)

where the amplitude a(T1) and the angle β(T1) are real-valued quantities, show
that (11) can be rewritten as

a′ = −ζa− F

2
sinϕ

aϕ′ = −
(
σa− 3

8
γa3 +

F

2
cosϕ

) (13)

where ϕ(T1) = −(σT1 − β)

Q5) The equilibrium (or ”fixed”) points of (13) correspond to solutions with
constant amplitude and phase. Show that the equilibrium amplitude solves

F̄ 2 = 4a2

(
ζ̄2 +

(
σ − 3

8
γ̄a2
)2
)

(14)

Q6) Solve (14) numerically (be aware that several solutions may exist) by
choosing F = 0.3, ζ = 0.1 and ϵ = 0.2, for γ ∈ [−3,−1, 0, 1, 5] and Ω ∈ [0.5; 2].
Plot the response-to-forcing gain (or ”magnification factor”)

M =
a

|F | (15)

as a function of Ω. What do you observe ? What are the main difference(s)
with respect to the linear oscillator (corresponding to γ = 0) ?

Q7) Read the recent research paper [1] and comment on the analogy between
a sloshing fluid flow and the forced Duffing oscillator.
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